Palladium-Catalyzed Oxidation of *Boc*-Protected *N*-Methylamines with IOAc as the Oxidant: A *Boc*-Directed sp³ C–H Bond Activation

Dong-Hui Wang, Xue-Shi Hao, Di-Fu Wu, and Jin-Quan Yu*

Department of Chemistry MS015, Brandeis University, Waltham, Massachusetts 02454-9110

yu200@brandeis.edu

Received June 6, 2006

Pd-catalyzed selective oxidation of *Boc*-protected *N*-methylamines with IOAc as the oxidant is described. Evidence for the involvement of a *Boc*-directed C–H activation process is provided.

Selective functionalization of C–H bonds adjacent to a nitrogen atom in simple amines and amides is of great importance for the synthesis of nitrogen-containing compounds and understanding enzymatic oxidations.¹ Murahashi's pioneering work on the oxidation of 3° amines using Pd⁰ and Ru^{II} catalysts mimics amine oxidase type (eq 1) and cytochrome P-450 type (eq 2) reactivity.² Transition metal-catalyzed oxidation of *N*,*N*-dialkylanilines to iminium ions³ (eq 3) followed by nucleophilic capture has been utilized by Murahashi and Li to form C–C bonds with selected substrates.⁴

$$\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{N} - \mathbf{C}\mathbf{H}\mathbf{R}_{3}\mathbf{R}_{4} \stackrel{\mathbf{Pd0}}{\longleftarrow} \mathbf{R}_{1}\mathbf{R}_{2}\mathbf{N}^{+} = \mathbf{C}\mathbf{R}_{3}\mathbf{R}_{4} + \mathbf{P}\mathbf{d}\mathbf{H}^{-} \quad (1)$$

$$R_1 R_2 N - CHR_3 R_4 \xrightarrow{R_1 V = 0} R_1 R_2 N^+ = CR_3 R_4 + Ru^{III}(OH)$$
(2)

$$\operatorname{ArR}_{1} \operatorname{N-CHR}_{2} \operatorname{R}_{3} \underbrace{\stackrel{\operatorname{Cu(I), Ru(II)}}{\longrightarrow}}_{\text{peroxides}} \operatorname{ArR}_{1} \operatorname{N}^{+} = \operatorname{CR}_{2} \operatorname{R}_{3} \quad (3)$$

Recently, Doyle described an efficient alkylation of C–H bonds adjacent to nitrogen atoms with a wide range of N,N-dialkylanilines using dirhodium caprolactamate.⁵ The electrochemical oxidation of cyclic amides to provide α -oxy-

10.1021/ol061384m CCC: \$33.50 © 2006 American Chemical Society Published on Web 06/30/2006

genated compounds as precursors for N-acyliminium ions has been widely used in natural product synthesis.⁶ A novel method of generating *N*-sulfonyliminium ions by a nitriene insertion into C–H bonds adjacent to an oxygen atom was also reported.⁷

In our effort to enhance the efficiency and practicality of directed C-H activation reactions, we have strategically selected to develop C-H functionalizations directed by synthetically useful protecting groups. Herein, we describe

(6) Moeller, K. D. Tetrahedron 2000, 56, 9527.

(7) Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 2028.

ORGANIC LETTERS 2006 Vol. 8, No. 15

Vol. 8, No. 15 3387-3390

^{(1) (}a) For a minireview on activation of sp³ C–H bonds in the α -position to a nitrogen atom see: Doye, S. Angew. Chem., Int. Ed. **2001**, 40, 3351. (b) Nugent, W. A.; Ovenall, D. W.; Holmes, S. J. Organometallics **1983**, 2, 161. (c) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. **2000**, 122, 12882. (d) Yi, C. S.; Yun, S. Y. Organometallics **2004**, 23, 5392. (e) Li, Z.; Li, C. J. J. Am. Chem. Soc. **2004**, 126, 11810.

^{(2) (}a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443.
(b) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820.

⁽³⁾ Lu, C. C.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 15818.

^{(4) (}a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. **2003**, 125, 15312. (b) Li, Z.; Li, C. J. J. Am. Chem. Soc. **2004**, 126, 11810. (c) Li, Z.; Li, C. J. J. Am. Chem. Soc. **2005**, 127, 3672.

⁽⁵⁾ Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128, 5648.

a Pd^{II}-catalyzed highly selective acetoxylation of α -methyl groups in a wide range of aliphatic and aromatic *Boc* -protected 2° *N*-methylamines using IOAc as the stoichiometric oxidant. The exclusive selectivity toward methyl groups is a characteristic feature of our catalytic system in contrast to the previously reported iminium ion pathway.^{3–5} The observed isotope effect, regioselectivity, and stereoselectivity are consistent with an unusual *Boc*-directed Pd insertion into sp³ C–H bonds.

Amide-directed palladation of sp² C–H bonds has been extensively explored to develop C-C bond and C-heteroatom bond-forming reactions since the early examples reported by Horino and Tremont using Pd^{II}/Pd^{IV} catalysis.⁸ Remarkably, Buchwald achieved an amide-directed C-H activation/C-N bond-forming sequence involving Pd^{II}/Pd⁰ catalysis in which practically useful oxidants (CuII/air) were employed.9 However, Boc-directed activation of sp3 C-H bonds ajacent to the nitrogen atom has not been achieved despite the potential synthetic utility due to the low coordination ability of the Boc group.¹⁰ Inspired by Beak's carbamatedirected lithiation reactions,¹¹ Crabtree's carbonyl-directed cycloiridation of aryl C-H bonds¹² and the early efforts from Murai, Chatani, and Kakiuchi,¹⁰ we decided to identify conditions that would oxidize Boc-protected N-methylamines via a *Boc*-directed C-H activation catalyzed by Pd(OAc)₂.

Boc-protected *N*-methylbutan-1-amine **1** was used to screen for a catalytic oxidation system. We have previously shown that Pd–alkyl or Pd–aryl complexes react with I₂ to give the iodinated products and PdI₂.^{13a,b} Unfortunately, stirring **1** with 1 equiv of Pd(OAc)₂ and I₂ in CH₂Cl₂ at room temperature or 50 °C led to a full recovery of the starting material. We further tested various inexpensive peroxide oxidants that were recently used in our C–H bond oxidation reactions.^{13c} No significant reaction was observed under these reaction conditions. We were pleased to find that the use of 1 equiv of IOAc as the oxidant generated in situ by reacting AgOAc with I₂ gave the actoxylated product **1a** in 90% yield in the presence 1 equiv of Pd(OAc)₂. Following a procedure reported by Lusztyk,¹⁴ IOAc is more efficiently produced by reacting I₂ with PhI(OAc)₂ (eq 4).

- (10) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935.
- (11) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed. 2004, 43, 2206.
- (12) Li, X.; Chen, P.; Faller, J. W.; Crabtree, R. H. Organometallics 2005, 24, 4810.
- (13) (a) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 2112. (b) Giri, R.; Chen, X.; Hao, X. S.; Li, J. J.; Fan, Z. P.; Yu, J. Q. Tetrahedron: Asymmetry 2005, 16, 3502. (c) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7420.

$$I_2 + PhI(OAc)_2 \rightarrow PhI + IOAc$$
 (4)

Thus, stirring **1** with 1 equiv of $PhI(OAc)_2$ and I_2 in the presence of 10 mol % of $Pd(OAc)_2$ in CH_2Cl_2 at 50 °C in a sealed tube for 40 h gives the acetoxylated product **1a** in 70% yield (Scheme 1).

PhI(OAc)₂ has been previously used as a stoichiomertic oxidant in Pd-catalyzed acetoxylation of C–H bonds.¹⁵ However, control experiments showed that no reaction was observed when PhI(OAc)₂ or I₂ was used alone. This result suggests that IOAc is critical for the *Boc*-directed oxidation of the C–H bonds. It is worth noting that our previously reported Pd-mediated iodination reaction directed by oxazo-lines can occur in the presence of either I₂ alone or IOAc,^{13a,b} which made it difficult to determine whether the oxidation of the Pd–C bonds involves I₂ or IOAc.

Table 1.	Pd-Catalyzed	Acetoxylation	of Boc-Protected				
N-Methylamines ^a							

entry	substrate		product		yield%
1	Boc Bu Me	1	Bu-N_OAc	1a	83
2	Me ^N Me	2	Me ^{_N} _OAc	2a	78
3	Et N Me	3	Et N OAc	3a	74
4	Et N Et	4	Et N OAc	4a	92
5	Me N Ph	5	Me N OAc	5a	85
6	Boc N Cyclohexyl	6	Cyclohexyl N OAc	6a	91
7	Boc PhCH ₂ CH ₂ N Me	7	PhCH ₂ CH ₂ Boc N OAc	7a	86
8	MeOCH ₂ CH ₂ N Me	8	MeOCH ₂ CH ₂ N OAc	8a	69
9	MeO ^{-N} Me	9	MeO ^{_N} OAc	9a	96

 a 10 mol % of Pd(OAc)_2, 1.6 equiv of I_2, 1.6 equiv of PhI(OAc)_2, DCE, 60 °C, 40 h.

^{(8) (}a) Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416. (b) Tremont,
S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759. (c) Kametani,
Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 2655.
(d) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer,
P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc.
2002, 124, 1586. (e) Zaitsev, V. G.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156.

⁽⁹⁾ Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.

⁽¹⁴⁾ Courtneidge, J. L.; Lusztyk, J.; Page, D. Tetrahedron Lett. 1994, 35, 1003.

Screening of the reaction conditions identified CH₂ClCH₂-Cl (DCE) as a better solvent. The yield of the acetoxylation of **1** was increased to 83% at 60 °C (Table 1, entry 1). Pd loading was reduced to 5 mol % by extending the reaction time to 72 h. The substrate scope was tested by using a variety of *N*-methylamines. The *N*-methyl groups are oxidized highly selectively to give the acetoxylated products in good yields (Table 1). The successful acetoxylation of substrate **9** also provides a potential means for functionalization of primary amines as both the Boc and OMe can be readily deprotected to release the primary amine.

This oxidation protocol was successfully applied to a wide range of *Boc*-protected *N*-methylanilines (Table 2). Func-

 Table 2.
 Pd-Catalyzed Acetoxylation of Boc-Protected

V-Methylanilines ^a								
entry	substrate		product	yield%				
1	CI Me	10	CI Boc OAc 10a	87				
2	MeO ₂ C Boc	11	MeO ₂ C	89				
3	MeO ₂ S Boo	1 2	MeO ₂ S	84				
4	O Me(MeO)	13	O N OAc 13a NMe(OMe)	84				
5	O C N Me	14	N OAc Me Boc	83				
6	NC BOC N Me	15	OAc 15a	77				
7	Boc N Me Ph	16	Ph Boc Ph OAc 16a	86 ^b				
8	MeO Boc MeO	17	MeO NMe 17a	50				
9	CI N Me	18	CI C	93				

^{*a*} 10 mol % of Pd(OAc)₂, 1 equiv of I₂, 1 equiv of PhI(OAc)₂, DCE, 60 °C, 40 h. ^{*b*} 24 °C, 72 h.

tional groups such as amides, ketones, esters, and sulfonates are tolerated and good yields are consistently obtained. In the absence of a para-substituent, electrophilic iodination by IOAc took place simultaneously to give the *p*-iodinated acetoxylation product **15a** (Table 2, entry 6). By carrying out the reaction at room temperature, the *p*-iodination of

substrate **16** was prevented (Table 2, entry 7). However, the *p*-iodination of **15** cannot be prevented completely at room temperature. Intriguingly, no *N*-methyl oxidation was observed with substrates containing an electron-donating group on the para-position (Table 2, entry 8).¹⁶ Notably, we also found that the pivaloyl group is as effective as the *Boc* group for this reaction (Table 2, entry 9), although the less hindered acetyl group displayed poor reactivity.

On the basis of characterizations of a number of Pd^{IV} complexes obtained by oxidizing Pd^{II} with MeI (X-ray),¹⁷ (PhCO₂)₂ (¹HNMR),¹⁸ and PhI(O₂CPh) (X-ray)¹⁹ and our recently developed C–H bond iodination reaction using Pd^{II} / Pd^{IV} catalysis,^{12a} we propose an unusual *Boc*-directed C–H insertion pathway to account for the acetoxylation of the *N*-methyl groups (Scheme 2). The IOAc serves as a sto-

ichiometric oxidant to oxidize the unstable Pd^{II} complex **1b** to a Pd^{IV} complex **1c**.²⁰ Our previous iodination reaction prompts us to assume a preferential reductive elimination of the iodide other than the acetate. It is also possible that the reductive elimination of the acetate occurs to give the acetoxylated product directly.

A number of mechanistic observations support our hypothesis. First, the high selectivity for primary C-H bonds and lack of reactivity of benzylic C-H bonds in **19** and **20** and secondary C-H bonds in **21** (Figure 1) cannot be

Figure 1. Unreactive substrates.

explained by the reaction pathways proposed for amine oxidations (eq 1-3) or a radical pathway.²¹

Second, the acetoxylation of a mixture of diastereomers **22** in 1:1 ratio gave **22a** in 2:1 ratio at 40% conversion

⁽¹⁵⁾ For the direct involvement of PhI(OAc)₂ in C-H bond oxidation see: (a) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A: Chem. 1996, 108, 35. (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.

⁽¹⁶⁾ The formation of a mixture of both o- and m-iodinated products is most likely due to an electrophilic substitution. The lack of reactivity of the *N*-methyl group in **17** could be explained by a bisdentate coordination from the *Boc* and the electron-rich aryl ring, which positions the *N*-methyl group away from the Pd(II) center. The presence of a *p*-methyl group also inhibits the *N*-methyl oxidation.

⁽¹⁷⁾ Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1986, 1722.

⁽¹⁸⁾ Canty, A. J.; Denney, M. C.; Skelton, B. W.; White, A. H. Organometallics 2004, 23, 1122.

⁽¹⁹⁾ Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790.

(Scheme 3). The diastereoselectivity obtained is consistent with a cyclic transition state formed via the coordination of the *Boc* group to the Pd center.

The isotope effects observed in both intermolecular ($k_{H/D} = 2.9$) and intramolecular ($k_{H/D} = 3.2$) competition experiments are consistent with the C–H cleavage being the ratelimiting step (Scheme 4).

Finally, the synthetic utility of both *Boc-* and pivaloylprotected products is demonstrated by allylation with allyltrimethylsilane, using a literature procedure (Scheme 5).⁴

In summary, we have developed a Pd-catalyzed acetoxylation of a wide range of *N*-methylamines directed by a *Boc* or pivaloyl group. Mechanistic data obtained are consistent with a σ -chelation-assisted sp³ C–H insertion. The acetoxylated products are useful building blocks for further synthetic transformations.

Acknowledgment. We thank Brandeis University for financial support and the Camille and Henry Dreyfus Foundation for a New Faculty Award. D.F.W is grateful to Pfizer for a Fellowship.

Supporting Information Available: Experimental procedure and characterization of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061384M

⁽²⁰⁾ For a *Boc*-coordinated alkylpalladium complex formed from the Heck reaction see: Tanaka, D.; Romeril, S. P.; Myers, A. G. *J. Am. Chem. Soc.* **2005**, *127*, 10323.

⁽²¹⁾ For nonselective radical oxidation of tertiary amines with peroxide oxidants see: Ochiai, M.; Kajishima, D.; Sueda, T. *Heterocycles* **1997**, *46*, 71.